首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1941篇
  免费   395篇
  国内免费   307篇
  2024年   3篇
  2023年   108篇
  2022年   47篇
  2021年   66篇
  2020年   141篇
  2019年   150篇
  2018年   141篇
  2017年   146篇
  2016年   145篇
  2015年   131篇
  2014年   94篇
  2013年   148篇
  2012年   123篇
  2011年   113篇
  2010年   84篇
  2009年   134篇
  2008年   126篇
  2007年   112篇
  2006年   76篇
  2005年   55篇
  2004年   78篇
  2003年   42篇
  2002年   44篇
  2001年   31篇
  2000年   42篇
  1999年   26篇
  1998年   20篇
  1997年   28篇
  1996年   24篇
  1995年   20篇
  1994年   20篇
  1993年   15篇
  1992年   20篇
  1991年   17篇
  1990年   11篇
  1989年   10篇
  1988年   8篇
  1987年   6篇
  1986年   3篇
  1985年   8篇
  1984年   3篇
  1983年   4篇
  1982年   6篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1973年   1篇
  1970年   2篇
  1958年   4篇
排序方式: 共有2643条查询结果,搜索用时 31 毫秒
41.
蒋延玲  周广胜  王玉辉  王慧  石耀辉 《生态学报》2015,35(14):4559-4569
收集了1992—2013年关于模拟CO2浓度升高及气候变化(温度升高、降水变化)对内蒙古地带性草原群落的5个建群种针茅植物(贝加尔针茅、本氏针茅、大针茅、克氏针茅、短花针茅)影响的实验研究结果表明,模拟CO2浓度升高、增温和增雨将提高针茅植物的光合作用和株高生长,但CO2处理时间延长会导致光合适应;温度和降雨变化将改变针茅植物的物候进程,但物种之间反应有差异;CO2浓度升高有助于针茅植物生物量增加,增温和干旱则相反,CO2浓度升高对干旱的影响具有补偿作用;干旱和涝渍胁迫将提高针茅植物植株C/N,CO2浓度升高将加剧水分胁迫下针茅植物植株C/N的增加效应,导致牧草品质下降。由于当前在适应性指标、针茅植物对气候变化协同作用的适应机理及其敏感性研究等方面存在的不足,导致目前无法全面比较各针茅植物对CO2和温度、降水变化的响应差异及其敏感性,因而无法预测未来在全球变化背景下,这几种针茅植物的动态变化及其在地理分布上的迁移替代规律。为科学应对气候变化,未来应加强内蒙古地带性针茅植物的适应性指标、针茅植物对多因子协同作用的适应机理及敏感性研究。  相似文献   
42.
Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic rate (the main [CO2] response); increasing length of growing season (the main temperature response); and higher leaf-area index (the main N deposition and partly [CO2] response). Soil organic matter will increase with increasing litter input, although priming may decrease the soil C stock initially, but litter quality effects should be minimal (response to [CO2], N deposition, and temperature); will decrease because of increasing temperature; and will increase because of retardation of decomposition with N deposition, although the rate of decomposition of high-quality litter can be increased and that of low-quality litter decreased. Single-factor responses can be misleading because of interactions between factors, in particular those between N and other factors, and indirect effects such as increased N availability from temperature-induced decomposition. In the long term the strength of feedbacks, for example the increasing demand for N from increased growth, will dominate over short-term responses to single factors. However, management has considerable potential for controlling the C store.  相似文献   
43.
Species differ in their responses to global changes such as rising CO(2) and temperature, meaning that global changes are likely to change the structure of plant communities. Such alterations in community composition must be underlain by changes in the population dynamics of component species. Here, the impact of elevated CO(2) (550 micromol mol(-1)) and warming (+2 degrees C) on the population growth of four plant species important in Australian temperate grasslands is reported. Data collected from the Tasmanian free-air CO(2) enrichment (TasFACE) experiment between 2003 and 2006 were analysed using population matrix models. Population growth of Themeda triandra, a perennial C(4) grass, was largely unaffected by either factor but population growth of Austrodanthonia caespitosa, a perennial C(3) grass, was reduced substantially in elevated CO(2) plots. Warming and elevated CO(2) had antagonistic effects on population growth of two invasive weeds, Hypochaeris radicata and Leontodon taraxacoides, with warming causing population decline. Analysis of life cycle stages showed that seed production, seedling emergence and establishment were important factors in the responses of the species to global changes. These results show that the demographic approach is very useful in understanding the variable responses of plants to global changes and in elucidating the life cycle stages that are most responsive.  相似文献   
44.
When is breeding for drought tolerance optimal if drought is random?   总被引:3,自引:0,他引:3  
* Increasing climatic unpredictability associated with characteristics of some species makes plant drought-tolerance an important drought-adaptation strategy. Using norm-of-reaction functions, or empirically determined functions that enable us to predict the state of a trait given the state of an environmental variable, allows modelling of plant performance when water availability varies randomly. * A mathematical model is proposed to evaluate drought-tolerance and growth strategies given a set of environmental parameters: the frequency of rainy days, the soil water-storage capacity, plant water use and plant growth rates. This model compares the performance of genotypes that differ in drought tolerance expressed as the ability to grow in drier soils, and assumes a general trade-off function between drought tolerance and maximum plant growth rate. * It is worth selecting plants with a greater degree of drought tolerance, expressed by the ability to grow in drier soils whenever the frequency of rains is smaller than the rate of soil water depletion. Otherwise, maximizing growth rate at the expense of drought tolerance is the best strategy. The nature of the trade-off between drought tolerance and plant growth rate also constrains the selection for optimal drought-adapted genotypes. * Breeders will have to consider these aspects of plant-environment interactions before establishing selection programs for drought adaptation.  相似文献   
45.
This work reports the results of an environmental survey carried out in an industrial area in the Province of Turin: its main aim is to assess the levels of iron and aluminium in the outside air during the period from July to September to assess the influence of industrial activity (a cast-iron and aluminium foundry) which is interrupted during the month of August, on the level of metals present in the air. Conducting the analysis during this period of time made it possible to avoid the confounding effect of pollution due to domestic central heating. The measurements were taken from nine areas at different distances from the foundry in the area and according to the direction of the prevailing winds, as deduced from the historical data. The results of this survey show a statistically significant difference in iron and aluminium levels in the outside air in the geographic areas between the two main periods examined: during August (no foundry activity) v/s July-September (foundry activity). The values recorded are: Aluminium 0.4+/-0.45 microg/m(3) v/s 1.12+/-1.29 microg/m(3) (p<0.0001); Iron 0.95+/-0.56 microg/m(3) v/s 1.6+/-1.0 microg/m(3) (p<0.0001). There were no statistically significant differences between the nine sampling points from the point of view of the sampling sites, climate conditions and wind directions. We found no correlation with car traffic, in terms of the number of vehicles, and metals. The values of iron tended to be higher in the areas farther away from the foundry site in the areas located along the path of the prevailing winds.  相似文献   
46.
High-temperature biotrickling filtration of hydrogen sulphide   总被引:1,自引:0,他引:1  
Biofiltration of malodorous reduced sulphur compounds such as hydrogen sulphide has been confined to emissions that are at temperatures below 40°C despite the fact that there are many industrial emissions (e.g. in the pulp and paper industry) at temperatures well above 40°C. This paper describes our study on the successful treatment of hydrogen sulphide gas at temperatures of 40, 50, 60 and 70°C using a microbial community obtained from a hot spring. Three biotrickling filter (BTF) systems were set up in parallel for a continuous run of 9 months to operate at three different temperatures, one of which was always at 40°C as a mesophilic control and the other two were for exploring high-temperature operation up to 70°C. The continuous experiment and a series of batch experiments in glass bottles (250 ml) showed that addition of glucose and monosodium glutamate enhanced thermophilic biofiltration of hydrogen sulphide gas and a removal rate of 40 g m−3 h−1 was achieved at 70°C. We suggest that the glucose is acting as a carbon source for the existing microbial community in the BTFs, whereas glutamate is acting as a compatible solute. The use of such organic compounds to enhance biodegradation of hydrogen sulphide, particularly at high temperatures, has not been demonstrated to our knowledge and, hence, has opened up a range of possibilities for applying biofiltration to hot gas effluent.  相似文献   
47.
呼伦贝尔沙地45年来气候变化及其对生态环境的影响   总被引:1,自引:0,他引:1  
赵慧颖 《生态学杂志》2007,26(11):1817-1821
采用数理统计和对比分析方法,对近45年呼伦贝尔沙地气象观测资料和草场沙化、退化面积、植被状况等资料进行了分析。结果表明:呼伦贝尔沙地总体气候暖干化趋势显著;气温逐年升高、降水量减少、蒸发量增加和极端气候事件增多,使流动沙地面积不断增加,植被盖度下降。卫星遥感监测和全国沙漠化普查结果进一步表明,呼伦贝尔沙地的沙漠化正在扩展,生态环境正在恶化。逐年减少的大风日数和沙尘暴日数有利于该地区生态的保护与建设。20世纪80年代以来,沙区各级政府加大了对沙化的治理力度,沙地局部植被恢复较快。  相似文献   
48.
A cause and effect understanding of thermal limitation and adaptation at various levels of biological organization is crucial in the elaboration of how the Antarctic climate has shaped the functional properties of extant Antarctic fauna. At the same time, this understanding requires an integrative view of how the various levels of biological organization may be intertwined. At all levels analysed, the functional specialization to permanently low temperatures implies reduced tolerance of high temperatures, as a trade-off. Maintenance of membrane fluidity, enzyme kinetic properties (Km and k(cat)) and protein structural flexibility in the cold supports metabolic flux and regulation as well as cellular functioning overall. Gene expression patterns and, even more so, loss of genetic information, especially for myoglobin (Mb) and haemoglobin (Hb) in notothenioid fishes, reflect the specialization of Antarctic organisms to a narrow range of low temperatures. The loss of Mb and Hb in icefish, together with enhanced lipid membrane densities (e.g. higher concentrations of mitochondria), becomes explicable by the exploitation of high oxygen solubility at low metabolic rates in the cold, where an enhanced fraction of oxygen supply occurs through diffusive oxygen flux. Conversely, limited oxygen supply to tissues upon warming is an early cause of functional limitation. Low standard metabolic rates may be linked to extreme stenothermy. The evolutionary forces causing low metabolic rates as a uniform character of life in Antarctic ectothermal animals may be linked to the requirement for high energetic efficiency as required to support higher organismic functioning in the cold. This requirement may result from partial compensation for the thermal limitation of growth, while other functions like hatching, development, reproduction and ageing are largely delayed. As a perspective, the integrative approach suggests that the patterns of oxygen- and capacity-limited thermal tolerance are linked, on one hand, with the capacity and design of molecules and membranes, and, on the other hand, with life-history consequences and lifestyles typically seen in the permanent cold. Future research needs to address the detailed aspects of these interrelationships.  相似文献   
49.
This paper is focused on the model identification of a Micro Air Vehicle (MAV) in straight steady flight condition. The identification is based on input-output data collected from flight tests using both frequency and time dorrtain techniques. The vehicle is an in-house 40 cm wingspan airplane. Because of the complex coupled, multivariable and nonlinear dynamics of the aircraft, linear SISO structures for both the lateral and longitudinal models around a reference state were derived. The aim of the identification is to provide models that can be used in future development of control techniques for the MAV.  相似文献   
50.
Global temperature has been Increased by 0.6 ℃ over the past century and is predicted to Increase by 1.4-5.8 ℃ by the end of this century. It is unclear what impacts global warming will have on tallgrass species. In the present study, we examined leaf net photosynthetic rate (P.) and leaf respiration rate in darkness (Rd) of Aster erlcoldes (L.) Nesom, Ambrosia psllostachya DC., Helianthus mollis Lam., and Sorghastrum nutans (L.) Nash In response to experimental warming in a tallgrass prairie ecosystem of the Great Plains, USA, in the autumn (fall) of 2000 and through 2001. Warming has been Implemented with infrared heaters since 21 November 1999. The P. increased significantly In spring, decreased in early fall, and did not change in summer and late fall in the four species under warming compared with control. The Rd of the four species increased significantly until mid-summer and then did not change under warming. Measured temperature-response curves of P. showed that warming Increased the optimum temperature of P. (Topt) by 2.32 and 4.59 ℃ for H. mollis and S. nutans, respectively, in August, whereas there were no changes in May and September, and A. ericoldes and A. psllostachya also showed no changes in any of the 3 months. However, P. at optimum temperature (Popt) showed downregulation in September and no regulation in May and August for all four species. The temperature-response curves of Rd Illustrate that the temperature sensitivity of Rd, Q10, was lower in the warmed plots compared with the control plots, except for A. ericoides in August, whereas there were no changes In May and September for all four species. The results of the present study indicate that photosynthetic and respiratory acclimation varies with species and among seasons, occurring In the mid-growing season and not in the early and late growing seasons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号